

Welcome to AnnotationFrameworkClient’s documentation!

Contents:

	Getting Started
	Installation

	Assumptions

	Framework Client: one client for all services
	Initializing a FrameworkClient

	Authentication Service
	Getting a new token

	Loading saved tokens

	AnnotationEngine
	Getting existing tables

	Downloading annotations

	Create a new table

	ChunkedGraph
	Look up a supervoxel

	Getting supervoxels for a root id

	Info Service
	Accessing dataset information

	Adjusting formatting

	EMAnnotationSchemas
	Get the list of schema

	View a specific schema

	JSON Neuroglancer State Service
	Retrieving a state

	Uploading a state

	LookupClient
	Initializing a LookupClient

	Looking up points

	Looking up DataFrames

API

API:

	annotationframeworkclient package
	Submodules

	annotationengine module

	auth module

	chunkedgraph module

	emannotationschemas module

	frameworkclient module

	imagery module

	infoservice module

	jsonservice module

	lookup module

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

AnnotationFramework client is a package for simplifying interactions with HTML services associated with the DynamicAnnoationFramework. Including

	pychunkedgraph [https://www.github.com/seung-lab/pychunkedgraph] (For tracking dynamic segmentations)

	NeuroglancerJsonServer [https://www.github.com/seung-lab/NeuroglancerJsonServer] (For posting/getting neuroglancer json states)

	AnnotationFrameworkInfoService [https://www.github.com/seung-lab/AnnotationFrameworkInfoService] (For storing dataset metadata information)

	EmAnnotationSchemas [https://www.github.com/seung-lab/EmAnnotationSchemas] (For storing an extensible set of schemas for annotating EM data)

	AnnotatationEngine [https://www.github.com/seung-lab/AnnotationEngine] (For storing annotations on EM data)

Installation

The AnnotationFrameworkClient can be installed with pip:

$ pip install annotationframeworkclient

Assumptions

the code is setup to work flexibly with any deployment of these services, but you need to specify the server_address if that address is not
https://www.dynamicannotationframework.com/ for each client when initializing it. similarly, the clients can query the info service for metadata
to simplify the interaction with a dataset, but you have to specify a dataset name.

Framework Client: one client for all services

The Dynamic Annotation Framework consists of a number of different
services, each with a specific set of tasks that it can perform through
REST endpoints. This module is designed to ease programmatic interaction
with all of the various endpoints. Going forward, we also will be
increasingly using authentication tokens for programmatic access to most
if not all of the services. In order to collect a given server, dataset
name, and user token together into a coherent package that can be used
on multiple endpoints, we will use a FrameworkClient that can build
appropriately configured clients for each of the specific services. Each of the individual services has their own specific documentation as well.

Initializing a FrameworkClient

Assuming that the services are on www.dynamicannotationframework.com
and authentication tokens are either not being used or set up with
default values (see next section), one needs only to specify the dataset
name.

from annotationframeworkclient import FrameworkClient

dataset_name = 'pinky100'
client = FrameworkClient(dataset_name)

Just to confirm that this works, let’s see if we can get the EM image
source from the InfoService. If you get a reasonable looking path,
everything is okay.

print(f"The image source is: {client.info.image_source()}")

Accessing specific clients

Each client can be acccessed as a property of the main client. See the documentation at left for the capabilities of each. Assuming your client is named client, the subclients for each service are:

	Authentication Service : client.auth

	AnnotationEngine : client.annotation

	PyChunkedGraph : client.chunkedgraph

	InfoService : client.info

	EM Annotation Schemas : client.schemas

	JSON Neuroglancer State Service : client.state

In addition, there are more complex clients that use multiple services together:

	LookupClient : Uses Cloudvolume and the ChunkedGraph to look up segmentations associated with point-like arrays or dataframes.

	ImageryClient : Uses Cloudvolume and the ChunkedGraph to look up segmentations and imagery together.

Authentication Service

Going forward, we’re going to need authentication tokens for
programmatic access to our services. The AuthClient handles storing and
loading your token or tokens and inserting it into requests in other
clients.

We can access the auth client from client.auth. Once you have saved
a token, you probably won’t interact with this client very often,
however it has some convenient features for saving new tokens the first
time. Let’s see if you have a token already. Probably not.

auth = client.auth
print(f"My current token is: {auth.token}")

Getting a new token

It is not yet possible to get a new token programmatically, but the
function get_new_token() provides instructions for how to get and
save it.

By default, the token is saved to
~/.cloudvolume/secrets/chunkedgraph-secret.json as a string under
the key token. The following steps will save a token there.

Note: I am not sure where the auth server is being hosted right now, so
we are going to use a fake token for documentation purposes

auth.get_new_token()

new_token = 'fake_token_123'
auth.save_token(token=new_token)
print(f"My token is now: {auth.token}")

Loading saved tokens

Try opening ~/.cloudvolume/secrets/chunkedgraph-secret.json to see
what we just created.

If we had wanted to use a different file or a different json key, we
could have specified that in auth.save_token.

Because we used the default values, this token is used automatically
when we intialize a new FrameworkClient. If we wanted to use a different
token file, token key, or even directly specify a token we could do so
here.

client = FrameworkClient(dataset_name)
print(f"Now my basic token is: {client.auth.token}")

client_direct = FrameworkClient(dataset_name, auth_token='another_fake_token_678')
print(f"A directly specified token is: {client_direct.auth.token}")

If you use a FrameworkClient, the AuthClient and its token will be
automatically applied to any other services without further use.

AnnotationEngine

The AnnotationClient is used to interact with the AnnotationEngine
service to create tables from existing schema, upload new data, and
download existing annotations. Note that annotations in the
AnnotationEngine are not linked to any particular segmentation, and thus
do not include any root ids. An annotation client is accessed with
client.annotation.

Getting existing tables

A list of the existing tables for the dataset can be found at with
get_tables.

all_tables = client.annotation.get_tables()
all_tables[0]

Each table has three main properties that can be useful to know:

	table_name : The table name, used to refer to it when uploading or downloading annotations. This is also passed through to the table in the Materialized database.

	schema_name : The name of the table’s schema from EMAnnotationSchemas (see below).

	max_annotation_id : An upper limit on the number of annotations already contained in the table.

Downloading annotations

You can download the JSON representation of a data point through the
get_annotation method. This can be useful if you need to look up
information on unmaterialized data, or to see what a properly templated
annotation looks like.

table_name = all_tables[0]['table_name'] # 'ais_analysis_soma'
annotation_id = 100
client.annotation.get_annotation(annotation_id=annotation_id, table_name=table_name)

Create a new table

One can create a new table with a specified schema with the
create_table method:

client.annotation.create_table(table_name='test_table',
 schema_name='microns_func_coreg')

New data can be generated as a dict or list of dicts following the
schema and uploaded with post_annotation. For example, a
microns_func_coreg point needs to have: * type set to
microns_func_coreg * pt set to a dict with position as a
key and the xyz location as a value. * func_id set to an integer.

The following could would create a new annotation and then upload it to the service. Note that you get back the annotation id(s) of what you uploaded.

new_data = {'type': 'microns_func_coreg',
 'pt': {'position': [1,2,3]},
 'func_id': 0}
client.annotation.post_annotation(table_name='test_table', data=[new_data])

ChunkedGraph

The ChunkedGraph client allows one to interact with the ChunkedGraph,
which stores and updates the supervoxel agglomeration graph. This is
most often useful for looking up an object root id of a supervoxel or
looking up supervoxels belonging to a root id. The ChunkedGraph client
is at client.chunkedgraph.

Look up a supervoxel

Usually in Neuroglancer, one never notices supervoxel ids, but they are
important for programmatic work. In order to look up the root id for a
location in space, one needs to use the supervoxel segmentation to get
the associated supervoxel id. The ChunkedGraph client makes this easy
using the get_root_ids method.

sv_id = 104200755619042523
client.chunkedgraph.get_root_id(supervoxel_id=sv_id)

However, as proofreading occurs, the root id that a supervoxel belongs
to can change. By default, this function returns the current state,
however one can also provide a UTC timestamp to get the root id at a
particular moment in history. This can be useful for reproducible
analysis. Note below that the root id for the same supervoxel is
different than it is now.

import datetime

I looked up the UTC POSIX timestamp from a day in early 2019.
timestamp = datetime.datetime.utcfromtimestamp(1546595253)

sv_id = 104200755619042523
client.chunkedgraph.get_root_id(supervoxel_id=sv_id, timestamp=timestamp)

Getting supervoxels for a root id

A root id is associated with a particular agglomeration of supervoxels,
which can be found with the get_leaves method. A new root id is
generated for every new change in the chunkedgraph, so time stamps do
not apply.

root_id = 648518346349541252
client.chunkedgraph.get_leaves(root_id)

Info Service

A dataset has a number of complex paths to various data sources that
together comprise a dataset. Rather than hardcode these paths, the
InfoService allows one to query the location of each data source. This
is also convenient in case data sources change.

An InfoClient is accessed at client.info.

client = FrameworkClient(dataset_name)
print(f"This is an info client for {client.info.dataset_name} on {client.info.server_address}")

Accessing dataset information

All of the information accessible for the dataset can be seen as a dict
using get_dataset_info().

info.get_dataset_info()

Individual entries can be found as well. Use tab autocomplete to see the
various possibilities.

info.graphene_source()

Adjusting formatting

Because of the way neuroglancer looks up data versus cloudvolume,
sometimes one needs to convert between gs:// style paths to
https://storage.googleapis.com/ stype paths. All of the path sources
in the info client accept a format_for argument that can handle
this, and correctly adapts to graphene vs precomputed data sources.

neuroglancer_style_source = info.image_source(format_for='neuroglancer')
print(f"With gs-style: { neuroglancer_style_source }")

cloudvolume_style_source = info.image_source(format_for='cloudvolume')
print(f"With https-style: { cloudvolume_style_source }")

EMAnnotationSchemas

The EMAnnotationSchemas client lets one look up the available schemas
and how they are defined. This is mostly used for programmatic
interactions between services, but can be useful when looking up schema
definitions for new tables.

Get the list of schema

One can get the list of all available schema with the schema method.
Currently, new schema have to be generated on the server side, although
we aim to have a generic set available to use.

client.schema.schema()

View a specific schema

The details of each schema can be viewed with the schema_definition
method, formatted as per JSONSchema.

example_schema = client.schema.schema_definition('microns_func_coreg')
example_schema

This is mostly useful for programmatic interaction between services at
the moment, but can also be used to inspect the expected form of an
annotation by digging into the format.

example_schema['definitions']['FunctionalCoregistration']

JSON Neuroglancer State Service

We store the JSON description of a Neuroglancer state in a simple
database at the JSON Service. This is a convenient way to build states
to distribute to people, or pull states to parse work by individuals.
The JSON Client is at client.state

client.state

Retrieving a state

JSON states are found simply by their ID, which you get when uploading a
state. You can download a state with get_state_json.

example_id = 4845531975188480
example_state = client.state.get_state_json(test_id)
example_state['layers'][0]

Uploading a state

You can also upload states with upload_state_json. If you do this,
the state id is returned by the function. Note that there is no easy way
to query what you uploaded later, so be VERY CAREFUL with this state id
if you wish to see it again.

Note: If you are working with a Neuroglancer Viewer object or similar,
in order to upload, use viewer.state.to_json() to generate this
representation.

example_state['layers'][0]['name'] = 'example_name'
new_id = client.state.upload_state_json(example_state)

test_state = client.state.get_state_json(new_id)
test_state['layers'][0]['name']

LookupClient

The LookupClient simplifies the process of looking up supervoxel ids and root ids for a list of points in space.
While this is less efficient than using the materialized database, it can be useful for small-scale scenarios like checking a few hundred annotations before uploading them to the AnnotationEngine or prototyping an analysis.

Initializing a LookupClient

The LookupClient combines multiple services and can’t be created from a server address and dataset name alone, unlike the single service clients.
Thus instead of being part of a FrameworkClient object, we instead use a client to initialize a LookupClient. To generate a default client, you don’t need any arguments.

lookup = client.make_lookup_client()

If you need more complex features, like setting a timestamp for root_id queries, setting a segmentation mip level, or changing the default voxel resolution, these are all possible.
For example,

import datetime
timestamp = datetime.datetime.utcfromtimestamp(1546595253)
lookup = client.make_lookup_client(timestamp=timestamp,
 segmentation_mip=1,
 voxel_resolution=[8,8,40])

Will use the mip-1 segmentation level to map points to supervoxels, will expect points given in a resolution of 8x8x40 nm, and will query root ids at the specified timestamp.

Looking up points

The LookupClient links two actions: Finding the supervoxels associated with a point in space, and looking up the root ids for those supervoxels.
Supervoxel lookup uses only Cloudvolume and root id lookup uses only the ChunkedGraph. However, for simplicity we can call each here.

import numpy as np
pts = [[1,2,3], [3,4,5]]
supervoxel_ids = lookup.lookup_supervoxels(pts)
root_ids = lookup.lookup_root_ids(supervoxel_ids)

However, because these two actions are often called as part of one pipeline, we can simplify the process in a single command:

root_ids, supervoxel_ids = lookup.lookup_points(pts)

Note that one can override the default mip, voxel resolution, and timestamp options for each call. See the method documentation for details.

Looking up DataFrames

Most of the annotations we work with in the DynamicAnnotationFramework live naturally in tabular DataFrames.
In particular, materialized point data follows a schema where each point in a spatial annotation has a location, a supervoxel id, and a root id, as well as whatever other associated metadata there may be (e.g. cell type).
To make the LookupClient produce output in a similar format, we have a handy method where you specify one or more point columns in a dataframe.

import pandas as pd
#Intialize a dataframe
df = pd.DataFrame(data={'cell_type':['e', 'i'], 'pt':pts})

df_lookup = lookup.lookup_dataframe(point_column='pt', data=df)

The resulting df_lookup no longer has a column called pt, but rather three new columns:

	pt_positon : The original point column data

	pt_supervoxel_id : The supervoxel id for that point

	pt_root_id : The root id for that point

If the segmentation is flat, pt_supervoxel_id is omitted since supervoxels and root ids are the same.
Each of the suffixes (_position, _supervoxel_id, and _root_id) can be set as optional parameters.
The point_column argument can also take a list of point column names if more than one point is stored per annotation.

annotationframeworkclient package

Submodules

annotationengine module

auth module

	
class annotationframeworkclient.auth.AuthClient(token_file='~/.cloudvolume/secrets/chunkedgraph-secret.json', token_key='token', token=None, server_address='https://global.daf-apis.com')

	Bases: object

Client to find and use auth tokens to access the dynamic annotation framework services.

	Parameters

	
	token_file (str, optional) – Path to a JSON key:value file holding your auth token.
By default, “~/.cloudvolume/secrets/chunkedgraph-secret.json”

	token_key (str, optional) – Key for the token in the token_file.
By default, “token”

	token (str or None, optional) – Direct entry of the token as a string. If provided, overrides the files.
If None, attempts to use the file paths.

	server_address (str, optional,) – URL to the auth server. By default, uses a default server address.

	
get_new_token(open=False)

	Currently, returns instructions for getting a new token based on the current settings and saving it to the local environment. New OAuth tokens are currently not able to be retrieved programmatically.

	Parameters

	open (bool, optional) – If True, opens a web browser to the web page where you can generate a new token.

	
get_token(token_key=None)

	Load a token with a given key the specified token file

	Parameters

	token_key (str or None, optional) – key in the token file JSON, by default None. If None, uses ‘token’.

	
request_header

	Formatted request header with the specified token

	
save_token(token=None, token_key='token', overwrite=False, token_file=None, switch_token=True)

	Conveniently save a token in the correct format.

After getting a new token by following the instructions in authclient.get_new_token(), you can save it with a fully default configuration by running:

token = ‘my_shiny_new_token’

authclient.save_token(token=token)

Now on next load, authclient=AuthClient() will make an authclient instance using this token.
If you would like to specify more information about the json file where the token will be stored, see the parameters below.

	Parameters

	
	token (str, optional) – New token to save, by default None

	token_key (str, optional) – Key for the token in the token_file json, by default “token”

	overwrite (bool, optional) – Allow an existing token to be changed, by default False

	token_file (str, optional) – Path to the token file, by default None. If None, uses the default file location specified above.

	switch_token (bool, optional) – If True, switch the auth client over into using the new token, by default True

	
token

	Secret token used to authenticate yourself to the Dynamic Annotation Framework services.

chunkedgraph module

emannotationschemas module

	
annotationframeworkclient.emannotationschemas.SchemaClient(server_address=None, auth_client=None, api_version='latest')

	

	
class annotationframeworkclient.emannotationschemas.SchemaClientLegacy(server_address, auth_header, api_version, endpoints, server_name)

	Bases: annotationframeworkclient.base.ClientBase

	
schema()

	Get the available schema types

	Returns

	List of schema types available on the Schema service.

	Return type

	list

	
schema_definition(schema_type)

	Get the definition of a specified schema_type

	Parameters

	schema_type (str) – Name of a schema_type

	Returns

	Schema definition

	Return type

	json

frameworkclient module

imagery module

infoservice module

	
annotationframeworkclient.infoservice.InfoServiceClient(server_address=None, dataset_name=None, auth_client=None, api_version='latest')

	

	
class annotationframeworkclient.infoservice.InfoServiceClientLegacy(server_address, auth_header, api_version, endpoints, server_name, dataset_name)

	Bases: annotationframeworkclient.base.ClientBaseWithDataset

	
annotation_endpoint(dataset_name=None, use_stored=True)

	AnnotationEngine endpoint for a dataset.

	Parameters

	
	dataset_name (str or None, optional) – Name of the dataset to look up. If None, uses the value specified by the client. Default is None.

	use_stored (bool, optional) – If True, uses the cached value if available. If False, re-queries the InfoService. Default is True.

	Returns

	Location of the AnnotationEngine

	Return type

	str

	
flat_segmentation_source(dataset_name=None, use_stored=True, format_for='raw')

	Cloud path to the flat segmentation for the dataset

	Parameters

	
	dataset_name (str or None, optional) – Name of the dataset to look up. If None, uses the value specified by the client. Default is None.

	use_stored (bool, optional) – If True, uses the cached value if available. If False, re-queries the InfoService. Default is True.

	format_for ('raw', 'cloudvolume', or 'neuroglancer', optional) – Formats the path for different uses.
If ‘raw’ (default), the path in the InfoService is passed along.
If ‘cloudvolume’, a “precomputed://gs://” type path is converted to a full https URL.
If ‘neuroglancer’, a full https URL is converted to a “precomputed://gs://” type path.

	Returns

	Formatted cloud path to the flat segmentation

	Return type

	str

	
get_dataset_info(dataset_name=None, use_stored=True)

	Gets the info record for a dataset

	Parameters

	
	dataset_name (str, optional) – Dataset to look up. If None, uses the one specified by the client. By default None

	use_stored (bool, optional) – If True and the information has already been queried for that dataset, then uses the cached version. If False, re-queries the infromation. By default True

	Returns

	The complete info record for the dataset

	Return type

	dict or None

	
get_datasets()

	Query which datasets are available at the info service

	Returns

	List of dataset names

	Return type

	list

	
graphene_source(dataset_name=None, use_stored=True, format_for='raw')

	Cloud path to the chunkgraph-backed Graphene segmentation for a dataset

	Parameters

	
	dataset_name (str or None, optional) – Name of the dataset to look up. If None, uses the value specified by the client. Default is None.

	use_stored (bool, optional) – If True, uses the cached value if available. If False, re-queries the InfoService. Default is True.

	format_for ('raw', 'cloudvolume', or 'neuroglancer', optional) – Formats the path for different uses.
If ‘raw’ (default), the path in the InfoService is passed along.
If ‘cloudvolume’, a “graphene://https://” type path is used
If ‘neuroglancer’, a “graphene://https://” type path is used, as needed by Neuroglancer.

	Returns

	Formatted cloud path to the Graphene segmentation

	Return type

	str

	
image_source(dataset_name=None, use_stored=True, format_for='raw')

	Cloud path to the imagery for the dataset

	Parameters

	
	dataset_name (str or None, optional) – Name of the dataset to look up. If None, uses the value specified by the client. Default is None.

	use_stored (bool, optional) – If True, uses the cached value if available. If False, re-queries the InfoService. Default is True.

	format_for ('raw', 'cloudvolume', or 'neuroglancer', optional) – Formats the path for different uses.
If ‘raw’ (default), the path in the InfoService is passed along.
If ‘cloudvolume’, a “precomputed://gs://” type path is converted to a full https URL.
If ‘neuroglancer’, a full https URL is converted to a “precomputed://gs://” type path.

	Returns

	Formatted cloud path to the flat segmentation

	Return type

	str

	
pychunkedgraph_endpoint(dataset_name=None, use_stored=True)

	

	
pychunkedgraph_segmentation_source(dataset_name=None, use_stored=True, format_for='raw')

	

	
pychunkedgraph_viewer_source(**kwargs)

	

	
pychunkgraph_endpoint(**kwargs)

	

	
pychunkgraph_segmentation_source(**kwargs)

	

	
refresh_stored_data()

	Reload the stored info values from the server.

	
supervoxel_source(dataset_name=None, use_stored=True, format_for='raw')

	Cloud path to the supervoxel segmentation for a dataset

	Parameters

	
	dataset_name (str or None, optional) – Name of the dataset to look up. If None, uses the value specified by the client. Default is None.

	use_stored (bool, optional) – If True, uses the cached value if available. If False, re-queries the InfoService. Default is True.

	format_for ('raw', 'cloudvolume', or 'neuroglancer', optional) – Formats the path for different uses.
If ‘raw’ (default), the path in the InfoService is passed along.
If ‘cloudvolume’, a “precomputed://gs://” type path is converted to a full https URL.
If ‘neuroglancer’, a full https URL is converted to a “precomputed://gs://” type path.

	Returns

	Formatted cloud path to the supervoxel segmentation

	Return type

	str

	
synapse_segmentation_source(dataset_name=None, use_stored=True, format_for='raw')

	Cloud path to the synapse segmentation for a dataset

	Parameters

	
	dataset_name (str or None, optional) – Name of the dataset to look up. If None, uses the value specified by the client. Default is None.

	use_stored (bool, optional) – If True, uses the cached value if available. If False, re-queries the InfoService. Default is True.

	format_for ('raw', 'cloudvolume', or 'neuroglancer', optional) – Formats the path for different uses.
If ‘raw’ (default), the path in the InfoService is passed along.
If ‘cloudvolume’, a “precomputed://gs://” type path is converted to a full https URL.
If ‘neuroglancer’, a full https URL is converted to a “precomputed://gs://” type path.

	Returns

	Formatted cloud path to the synapse segmentation

	Return type

	str

jsonservice module

	
annotationframeworkclient.jsonservice.JSONService(server_address=None, auth_client=None, api_version='latest')

	Client factory to interface with the JSON state service.

	Parameters

	
	server_address (str, optional) – URL to the JSON state server.
If None, set to the default global server address.
By default None.

	auth_client (An Auth client, optional) – An auth client with a token for the same global server, by default None

	api_version (int or 'latest', optional) – Which endpoint API version to use or ‘latest’. By default, ‘latest’ tries to ask
the server for which versions are available, if such functionality exists, or if not
it defaults to the latest version for which there is a client. By default ‘latest’

	
class annotationframeworkclient.jsonservice.JSONServiceLegacy(server_address, auth_header, api_version, endpoints, server_name)

	Bases: annotationframeworkclient.base.ClientBase

	
build_neuroglancer_url(state_id, ngl_url)

	Build a URL for a Neuroglancer deployment that will automatically retrieve specified state.

	Parameters

	
	state_id (int) – State id to retrieve

	ngl_url (str) – Base url of a neuroglancer deployment. For example, ‘https://neuromancer-seung-import.appspot.com’.

	Returns

	The full URL requested

	Return type

	str

	
get_state_json(state_id)

	Download a Neuroglancer JSON state

	Parameters

	state_id (int) – ID of a JSON state uploaded to the state service.

	Returns

	JSON specifying a Neuroglancer state.

	Return type

	dict

	
upload_state_json(json_state)

	Upload a Neuroglancer JSON state

	Parameters

	json_state (dict) – JSON-formatted Neuroglancer state

	Returns

	state_id of the uploaded JSON state

	Return type

	int

	
class annotationframeworkclient.jsonservice.JSONServiceV1(server_address, auth_header, api_version, endpoints, server_name)

	Bases: annotationframeworkclient.base.ClientBase

	
build_neuroglancer_url(state_id, ngl_url)

	Build a URL for a Neuroglancer deployment that will automatically retrieve specified state.

	Parameters

	
	state_id (int) – State id to retrieve

	ngl_url (str) – Base url of a neuroglancer deployment. For example, ‘https://neuromancer-seung-import.appspot.com’.

	Returns

	The full URL requested

	Return type

	str

	
get_state_json(state_id)

	Download a Neuroglancer JSON state

	Parameters

	state_id (int) – ID of a JSON state uploaded to the state service.

	Returns

	JSON specifying a Neuroglancer state.

	Return type

	dict

	
upload_state_json(json_state)

	Upload a Neuroglancer JSON state

	Parameters

	json_state (dict) – JSON-formatted Neuroglancer state

	Returns

	state_id of the uploaded JSON state

	Return type

	int

lookup module

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 annotationframeworkclient	

 	
 	
 annotationframeworkclient.auth	

 	
 	
 annotationframeworkclient.emannotationschemas	

 	
 	
 annotationframeworkclient.infoservice	

 	
 	
 annotationframeworkclient.jsonservice	

Index

 A
 | B
 | F
 | G
 | I
 | J
 | P
 | R
 | S
 | T
 | U

A

 	
 	annotation_endpoint() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	annotationframeworkclient.auth (module)

 	annotationframeworkclient.emannotationschemas (module)

 	
 	annotationframeworkclient.infoservice (module)

 	annotationframeworkclient.jsonservice (module)

 	AuthClient (class in annotationframeworkclient.auth)

B

 	
 	build_neuroglancer_url() (annotationframeworkclient.jsonservice.JSONServiceLegacy method)

 	(annotationframeworkclient.jsonservice.JSONServiceV1 method)

F

 	
 	flat_segmentation_source() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

G

 	
 	get_dataset_info() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	get_datasets() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	get_new_token() (annotationframeworkclient.auth.AuthClient method)

 	
 	get_state_json() (annotationframeworkclient.jsonservice.JSONServiceLegacy method)

 	(annotationframeworkclient.jsonservice.JSONServiceV1 method)

 	get_token() (annotationframeworkclient.auth.AuthClient method)

 	graphene_source() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

I

 	
 	image_source() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	
 	InfoServiceClient() (in module annotationframeworkclient.infoservice)

 	InfoServiceClientLegacy (class in annotationframeworkclient.infoservice)

J

 	
 	JSONService() (in module annotationframeworkclient.jsonservice)

 	
 	JSONServiceLegacy (class in annotationframeworkclient.jsonservice)

 	JSONServiceV1 (class in annotationframeworkclient.jsonservice)

P

 	
 	pychunkedgraph_endpoint() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	pychunkedgraph_segmentation_source() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	
 	pychunkedgraph_viewer_source() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	pychunkgraph_endpoint() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	pychunkgraph_segmentation_source() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

R

 	
 	refresh_stored_data() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	
 	request_header (annotationframeworkclient.auth.AuthClient attribute)

S

 	
 	save_token() (annotationframeworkclient.auth.AuthClient method)

 	schema() (annotationframeworkclient.emannotationschemas.SchemaClientLegacy method)

 	schema_definition() (annotationframeworkclient.emannotationschemas.SchemaClientLegacy method)

 	
 	SchemaClient() (in module annotationframeworkclient.emannotationschemas)

 	SchemaClientLegacy (class in annotationframeworkclient.emannotationschemas)

 	supervoxel_source() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

 	synapse_segmentation_source() (annotationframeworkclient.infoservice.InfoServiceClientLegacy method)

T

 	
 	token (annotationframeworkclient.auth.AuthClient attribute)

U

 	
 	upload_state_json() (annotationframeworkclient.jsonservice.JSONServiceLegacy method)

 	(annotationframeworkclient.jsonservice.JSONServiceV1 method)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to AnnotationFrameworkClient’s documentation!

 		
 Getting Started

 		
 Installation

 		
 Assumptions

 		
 Framework Client: one client for all services

 		
 Initializing a FrameworkClient

 		
 Accessing specific clients

 		
 Authentication Service

 		
 Getting a new token

 		
 Loading saved tokens

 		
 AnnotationEngine

 		
 Getting existing tables

 		
 Downloading annotations

 		
 Create a new table

 		
 ChunkedGraph

 		
 Look up a supervoxel

 		
 Getting supervoxels for a root id

 		
 Info Service

 		
 Accessing dataset information

 		
 Adjusting formatting

 		
 EMAnnotationSchemas

 		
 Get the list of schema

 		
 View a specific schema

 		
 JSON Neuroglancer State Service

 		
 Retrieving a state

 		
 Uploading a state

 		
 LookupClient

 		
 Initializing a LookupClient

 		
 Looking up points

 		
 Looking up DataFrames

 		
 annotationframeworkclient package

 		
 Submodules

 		
 annotationengine module

 		
 auth module

 		
 chunkedgraph module

 		
 emannotationschemas module

 		
 frameworkclient module

 		
 imagery module

 		
 infoservice module

 		
 jsonservice module

 		
 lookup module

_static/ajax-loader.gif

